]Прослушивание шифрованного аудиопотока Skype Здесь продемонстрировано, как при помощи PHMM-автомата решать еще более сложную задачу: распознавать шифрованный аудиопоток, генерируемый программой Skype (которая использует аудиокодек Opus/NGC в VBR-режиме и 256-битное AES-шифрование). В этой разработке используется экспериментальная установка вроде той, что представлена на рисунке выше, но только со Skype’овским кодеком Opus. Для обучения своего PHMM-автомата исследователи воспользовались такой последовательностью шагов: Сначала собрали набор саундтреков, включающих все интересующие их фразы; Затем установили сниффер сетевых пакетов и инициировали голосовую беседу между двумя учетными записями Skype (это привело к генерации шифрованного UDP-трафика между двумя машинами, в режиме P2P); Затем проигрывали каждый из собранных саундтреков в Skype-сеансе, используя медиаплеер, с пятисекундными интервалами молчания между треками; Тем временем пакетный сниффер был настроен для регистрации всего трафика, поступающего на вторую машину экспериментальной установки. После сбора всех тренировочных данных цепочки длин UDP-пакетов были извлечены при помощи автоматического парсера для PCAP-файлов. Полученные цепочки, состоящие из длин пакетов полезной нагрузки, затем использовались для тренировки PHMM-модели с использованием алгоритма Баума — Велша. А если отключить VBR-режим? Казалось бы, проблему подобных утечек можно решить, переведя аудиокодеки в режим постоянного битрейта (хотя какое же это решение — пропускная способность от этого резко снижается), но даже в этом случае безопасность шифрованного аудиопотока все еще оставляет желать лучшего. Ведь эксплуатация длин пакетов VBR-трафика — это лишь один из примеров атаки по обходным каналам. Но есть и другие примеры атак, например отслеживание пауз между словами. Задача, конечно, нетривиальная, но вполне решаемая. Почему нетривиальная? Потому что в Skype, например в целях согласования работы UDP-протокола и NAT (network address translation — преобразование сетевых адресов), а также для повышения качества передаваемого голоса, передача сетевых пакетов не останавливается, даже когда в разговоре возникают паузы. Это усложняет задачу выявления пауз в речи. Однако - разработан алгоритм адаптивного порогового значения, позволяющий отличать тишину от речи с точностью более 80%; предложенный метод основан на том факте, что речевая активность сильно коррелирует с размером зашифрованных пакетов: больше информации кодируется в голосовом пакете, когда пользователь говорит, чем во время молчания пользователя. ]Выводы[/COLOR] Как показывает практика, даже самая современная криптография неспособна защитить шифрованные VoIP-коммуникации от прослушивания, в том числе если эта криптография реализована надлежащим образом — что уже само по себе маловероятно. Стоит также отметить, что в данной статье подробно разобрана лишь одна математическая модель цифровой обработки сигналов (PHMM-автоматы), которая оказывается полезной при распознавании шифрованного аудиопотока (в таком шпионском софте правительственных спецслужб, как PRISM и BULLRUN). Но таких математических моделей существуют десятки и сотни. Так что если хотите идти в ногу со временем — смотрите на мир сквозь призму высшей математики.